The realization space is [1 1 0 0 1 1 0 x1 - 2 x1 - 2 x1^3 - 3*x1^2 + x1 + 2 x1^3 - 3*x1^2 + x1 + 2] [1 0 1 0 1 0 1 -1 -1 -x1 + 1 -x1 + 1] [0 0 0 1 1 1 -x1^2 + 2*x1 x1^3 - 3*x1^2 + 2*x1 x1^2 - 2*x1 x1^4 - 4*x1^3 + 5*x1^2 - 2*x1 x1^4 - 3*x1^3 + x1^2 + 2*x1] in the multivariate polynomial ring in 1 variable over ZZ within the vanishing set of the ideal Ideal (x1^10 - 12*x1^9 + 60*x1^8 - 158*x1^7 + 221*x1^6 - 121*x1^5 - 64*x1^4 + 104*x1^3 - 16*x1^2 - 16*x1) avoiding the zero loci of the polynomials RingElem[x1^3 - 3*x1^2 + 2*x1 + 1, x1, x1 - 2, x1 - 1, x1^2 - 2*x1 - 1, x1^2 - x1 - 1, x1^4 - 4*x1^3 + 4*x1^2 + x1 - 1, x1^4 - 3*x1^3 + x1^2 + 3*x1 - 1, x1^3 - 4*x1^2 + 3*x1 + 1, x1^4 - 5*x1^3 + 8*x1^2 - 4*x1 - 1, x1^2 - 3*x1 + 1]